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Language models

A language model assigns a probability to a sequence of words,
such that

∑
w∈Σ∗ p(w) = 1:

Given the observed training text, how probable is this new
utterance?

Thus we can compare different orderings of words
(e.g. Translation):

p(he likes apples) > p(apples likes he)

or choice of words (e.g. Speech Recognition):

p(he likes apples) > p(he licks apples)



History: cryptography



Language models

Much of Natural Language Processing can be structured as
(conditional) language modelling:

Translation

plm(Les chiens aiment les os ||| Dogs love bones)

Question Answering

plm(What do dogs love? ||| bones . |β)

Dialogue

plm(How are you? ||| Fine thanks. And you? |β)



Language models

Most language models employ the chain rule to decompose the
joint probability into a sequence of conditional probabilities:

p(w1,w2,w3, . . . ,wN) =

p(w1) p(w2|w1) p(w3|w1,w2)× . . .× p(wN |w1,w2, . . .wN−1)

Note that this decomposition is exact and allows us to model
complex joint distributions by learning conditional distributions
over the next word (wn) given the history of words observed
(w1, . . . ,wn−1).



Language models

The simple objective of modelling the next word given the
observed history contains much of the complexity of natural
language understanding.

Consider predicting the extension of the utterance:

p(·| There she built a)

With more context we are able to use our knowledge of both
language and the world to heavily constrain the distribution over
the next word:

p(·| Alice went to the beach. There she built a)

There is evidence that human language acquisition partly relies on
future prediction.



Evaluating a Language Model

A good model assigns real utterances wN
1 from a language a high

probability. This can be measured with cross entropy:

H(wN
1 ) = − 1

N
log2 p(wN

1 )

Intuition 1: Cross entropy is a measure of how many bits are
needed to encode text with our model.

Alternatively we can use perplexity:

perplexity(wN
1 ) = 2H(wN

1 )

Intuition 2: Perplexity is a measure of how surprised our model is
on seeing each word.



Language Modelling Data

Language modelling is a time series prediction problem in which we
must be careful to train on the past and test on the future.

If the corpus is composed of articles, it is best to ensure the test
data is drawn from a disjoint set of articles to the training data.



Language Modelling Data

Two popular data sets for language modelling evaluation are a
preprocessed version of the Penn Treebank,1 and the Billion Word
Corpus.2 Both are flawed:

• the PTB is very small and has been heavily processed. As
such it is not representative of natural language.

• The Billion Word corpus was extracted by first randomly
permuting sentences in news articles and then splitting into
training and test sets. As such train and test sentences come
from the same articles and overlap in time.

The recently introduced WikiText datasets3 are a better option.

1
www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz

2
code.google.com/p/1-billion-word-language-modeling-benchmark/

3Pointer Sentinel Mixture Models. Merity et al., arXiv 2016

www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
code.google.com/p/1-billion-word-language-modeling-benchmark/


Lecture Overview

The rest of this lecture will survey three approaches to
parametrising language models:

• With count based n-gram models we approximate the history
of observed words with just the previous n words.

• Neural n-gram models embed the same fixed n-gram history in
a continues space and thus better capture correlations
between histories.

• With Recurrent Neural Networks we drop the fixed n-gram
history and compress the entire history in a fixed length
vector, enabling long range correlations to be captured.



Outline

Count based N-Gram Language Models

Neural N-Gram Language Models

Recurrent Neural Network Language Models



N-Gram Models: The Markov Chain Assumption

Markov assumption:

• only previous history matters

• limited memory: only last k − 1 words are included in history
(older words less relevant)

• kth order Markov model

For instance 2-gram language model:

p(w1,w2,w3, . . . ,wn)

= p(w1) p(w2|w1) p(w3|w1,w2)× . . .
×p(wn|w1,w2, . . .wn−1)

≈ p(w1) p(w2|w1) p(w3|w2)× . . .× p(wn|wn−1)

The conditioning context, wi−1, is called the history.



N-Gram Models: Estimating Probabilities

Maximum likelihood estimation for 3-grams:

p(w3|w1,w2) =
count(w1,w2,w3)

count(w1,w2)

Collect counts over a large text corpus. Billions to trillions of
words are easily available by scraping the web.



N-Gram Models: Back-Off

In our training corpus we may never observe the trigrams:

• Oxford Pimm’s eater

• Oxford Pimm’s drinker

If both have count 0 our smoothing methods will assign the same
probability to them.

A better solution is to interpolate with the bigram probability:

• Pimm’s eater

• Pimm’s drinker



N-Gram Models: Interpolated Back-Off

By recursively interpolating the n-gram probabilities with the
(n − 1)-gram probabilities we can smooth our language model and
ensure all words have non-zero probability in a given context.

A simple approach is linear interpolation:

pI (wn|wn−2,wn−1) = λ3p(wn|wn−2,wn−1) +

λ2p(wn|wn−1) +

λ1p(wn).

where λ3 + λ2 + λ1 = 1.

A number of more advanced smoothing and interpolation schemes
have been proposed, with Kneser-Ney being the most common.4

4An empirical study of smoothing techniques for language modeling.
Stanley Chen and Joshua Goodman. Harvard University, 1998.
research. microsoft. com/ en-us/ um/ people/ joshuago/ tr-10-98. pdf

research.microsoft.com/en-us/um/people/joshuago/tr-10-98.pdf


Provisional Summary

Good

• Count based n-gram models are exceptionally scalable and are able
to be trained on trillions of words of data,

• fast constant time evaluation of probabilities at test time,

• sophisticated smoothing techniques match the empirical distribution
of language.5

Bad

• Large ngrams are sparse, so hard to capture long dependencies,

• symbolic nature does not capture correlations between semantically
similary word distributions, e.g. cat ↔ dog,

• similarly morphological regularities, running ↔ jumping, or gender.

5Heaps’ Law: en.wikipedia.org/wiki/Heaps’_law

en.wikipedia.org/wiki/Heaps'_law
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Neural Language Models

Feed forward network

h = g(Vx + c)

ŷ = Wh + b
x

h

ŷ



Neural Language Models

Trigram NN language model

hn = g(V [wn−1;wn−2] + c)

p̂n = softmax(Whn + b)

softmax(u)i =
exp ui∑
j exp uj

• wi are one hot vetors and p̂i are
distributions,

• |wi | = |p̂i | = V (words in the
vocabulary),

• V is usually very large > 1e5.

wn�1

hn

p̂n

wn�2



Neural Language Models: Sampling

wn|wn−1,wn−2 ∼ p̂n
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Neural Language Models: Sampling
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Neural Language Models: Sampling
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Neural Language Models: Sampling

wn|wn−1,wn−2 ∼ p̂n
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Neural Language Models: Sampling

wn|wn−1,wn−2 ∼ p̂n
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Neural Language Models: Training

The usual training objective is
the cross entropy of the data
given the model (MLE):

F = − 1

N

∑
n

costn(wn, p̂n)

The cost function is simply the
model’s estimated log-probability
of wn:

cost(a, b) = aT log b

(assuming wi is a one hot
encoding of the word)

wn

costn

wn�1

hn

p̂n

wn�2



Neural Language Models: Training

Calculating the gradients is
straightforward with back
propagation:

∂F
∂W

= − 1
N

∑
n

∂costn
∂p̂n

∂p̂n
∂W

∂F
∂V

= − 1
N

∑
n

∂costn
∂p̂n

∂p̂n
∂hn

∂hn
∂V

wn

costn

wn�1

hn

p̂n

wn�2



Neural Language Models: Training

Calculating the gradients is straightforward with back propagation:

∂F
∂W

= −1

4

4∑
n=1

∂costn
∂p̂n

∂p̂n
∂W

,
∂F
∂V

= −1

4

4∑
n=1

∂costn
∂p̂n

∂p̂n
∂hn

∂hn
∂V

w1 w2 w3 w4

cost1 cost2 cost3 cost4

w0

h1 h2 h3 h4

w1 w2 w3

p̂1 p̂2 p̂3 p̂4

F

w�1 w0 w1 w2

Note that calculating the gradients for each time step n is independent of
all other timesteps, as such they are calculated in parallel and summed.



Comparison with Count Based N-Gram LMs

Good

• Better generalisation on unseen n-grams, poorer on seen n-grams.
Solution: direct (linear) ngram features.

• Simple NLMs are often an order magnitude smaller in memory
footprint than their vanilla n-gram cousins (though not if you use
the linear features suggested above!).

Bad

• The number of parameters in the model scales with the n-gram size
and thus the length of the history captured.

• The n-gram history is finite and thus there is a limit on the longest
dependencies that an be captured.

• Mostly trained with Maximum Likelihood based objectives which do
not encode the expected frequencies of words a priori.
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Recurrent Neural Network Language Models

Feed Forward

h = g(Vx + c)

ŷ = Wh + b

x

h

ŷ

Recurrent Network

hn = g(V [xn; hn−1] + c)

ŷn = Whn + b

xn

hn

ŷn



Recurrent Neural Network Language Models

hn = g(V [xn; hn−1] + c)
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Recurrent Neural Network Language Models

hn = g(V [xn; hn−1] + c)
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Recurrent Neural Network Language Models

hn = g(V [xn; hn−1] + c)
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Recurrent Neural Network Language Models

hn = g(V [xn; hn−1] + c)
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Recurrent Neural Network Language Models

Feed Forward

h = g(Vx + c)

ŷ = Wh + b

y

cost

x

h

ŷ

Recurrent Network

hn = g(V [xn; hn−1] + c)

ŷn = Whn + b

xn

hn

ŷn

y

costn



Recurrent Neural Network Language Models

The unrolled recurrent network is a directed acyclic computation
graph. We can run backpropagation as usual:

F = −1

4

4∑
n=1

costn(wn, p̂n)

w1 w2 w3 w4

cost1 cost2 cost3 cost4

w0h0

h1 h2 h3 h4

w1 w2 w3

p̂1 p̂2 p̂3 p̂4

F



Recurrent Neural Network Language Models

This algorithm is called Back Propagation Through Time (BPTT).
Note the dependence of derivatives at time n with those at time
n + α:

∂F
∂h2

=
∂F

∂cost2

∂cost2

∂p̂2

∂p̂2

∂h2
+

∂F
∂cost3

∂cost3

∂p̂3

∂p̂3

∂h3

∂h3

∂h2
+

∂F
∂cost4

∂cost4

∂p̂4

∂p̂4

∂h4

∂h4

∂h3

∂h3

∂h2

w1 w2 w3 w4

cost1 cost2 cost3 cost4

w0h0
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Recurrent Neural Network Language Models

If we break these depdencies after a fixed number of timesteps we
get Truncated Back Propagation Through Time (TBPTT):

F = −1

4

4∑
n=1

costn(wn, p̂n)
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Recurrent Neural Network Language Models

If we break these depdencies after a fixed number of timesteps we
get Truncated Back Propagation Through Time (TBPTT):

∂F
∂h2
≈ ∂F
∂cost2

∂cost2

∂p̂2

∂p̂2

∂h2

w1 w2 w3 w4

cost1 cost2 cost3 cost4

w0h0
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F



RNNs: Minibatching and Complexity

Mini-batching on a GPU is an effective way of speeding up big
matrix vector products. RNNLMs have two such products that
dominate their computation: the recurrent matrix V and the
softmax matrix W .

Complexity:

BPTT Linear in the length of the longest sequence.
Minibatching can be inefficient as the sequences in a
batch may have different lengths.

TBPTT Constant in the truncation length T .
Efficient for mini-batching as all sequences have
length T .

More on this in the GPU lecture next week.



Comparison with N-Gram LMs

Good

• RNNs can represent unbounded dependencies, unlike models with a
fixed n-gram order.

• RNNs compress histories of words into a fixed size hidden vector.

• The number of parameters does not grow with the length of
dependencies captured, but they do grow with the amount of
information stored in the hidden layer.

Bad

• RNNs are hard to learn and often will not discover long range
dependencies present in the data (more on this next lecture).

• Increasing the size of the hidden layer, and thus memory, increases
the computation and memory quadratically.

• Mostly trained with Maximum Likelihood based objectives which do
not encode the expected frequencies of words a priori.



Bias vs Variance in LM Approximations

The main issue in language modelling is compressing the history (a
string). This is useful beyond language modelling in classification and
representation tasks (more next week).

• With n-gram models we approximate the history with only the last n
words.

• With recurrent models (RNNs, next) we compress the unbounded
history into a fixed sized vector.

We can view this progression as the classic Bias vs. Variance tradeoff in
ML. N-gram models are biased but low variance. RNNs decrease the bias
considerably, hopefully at a small cost to variance.

Consider predicting the probability of a sentence by how many times you
have seen it before. This is an unbiased estimator with (extremely) high
variance.
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In the next lecture I will discuss the architechtural
and algorithmic solutions to issues encountered

when training RNNs.
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